题目链接

题意:判断所给的图中 两点间的路径是否唯一(不走回头路)

坑点/思想:

  1. 没加入一条边, 判断他们的祖先是否相同,如果相同, 那么他们之间的路径不唯一
  2. 判断这个图是否只有一个连通块(用set储存(突然又想到直接用队列更好一些 )然后判断tofind(i) == i 的个数 如果大于1, 则证明不仅仅只有一个连通块)
  3. 针对上面的题, 特殊情况, 边界情况要考虑在内

Ac代码:(set实现)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
//#include <bits/stdc++.h>
#include <iostream>
#include "algorithm"
#include "cstdio"
#include "set"
#define esp 1e-6
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 5;
int f[N];

set<int>se;
set<int>::iterator it;
int tofind(int x){
if (f[x] != x){
f[x] = tofind(f[x]);
}
return f[x];
}
void tojoin(int a, int b){
a = tofind(a);
b = tofind(b);
if (a != b){
f[a] = b;
}
}
void init(){
for (int i = 0; i <= N; i++){
f[i] = i;
}
se.clear();
}
int main(){
int a, b;
int f = 0;
init();
while(cin >> a >> b){
if (!a && !b){
if (f)
puts("No");
else{
int sum = 0;
for (it = se.begin(); it != se.end(); it ++){
if (tofind(*it) == *it)
sum++;
if (sum >= 2)
break;
}
if (sum >= 2)
puts("No");
else{
puts("Yes");
}
}
f = 0;
init();
}
else if (a == -1 && b == -1)
break;
else{
se.insert(a);
se.insert(b);
if (tofind(a) != tofind(b))
tojoin(a, b);
else
f = 1;
}
}
return 0;
}

Ac代码:(队列实现)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
//#include <bits/stdc++.h>
#include <iostream>
#include "algorithm"
#include "cstdio"
#include "queue"
#include "set"
#define esp 1e-6
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 5;
int f[N];

queue<int>q;
int tofind(int x){
if (f[x] != x){
f[x] = tofind(f[x]);
}
return f[x];
}
void tojoin(int a, int b){
a = tofind(a);
b = tofind(b);
if (a != b){
f[a] = b;
}
}
void init(){
for (int i = 0; i <= N; i++){
f[i] = i;
}
while(!q.empty())
q.pop();
}
int main(){
int a, b;
int f = 0;
init();
while(cin >> a >> b){
if (!a && !b){
if (f)
puts("No");
else{
int sum = 0;
while(!q.empty()){
int k = q.front();
q.pop();
if (tofind(k) == k)
sum++;
if (sum >= 2)
break;
}
if (sum >= 2)
puts("No");
else{
puts("Yes");
}
}
f = 0;
init();
}
else if (a == -1 && b == -1)
break;
else{
q.push(a);
q.push(b);
if (tofind(a) != tofind(b))
tojoin(a, b);
else
f = 1;
}
}
return 0;
}